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Phase transition in the Rényi-Shannon entropy of Luttinger liquids
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The Rényi-Shannon entropy allows extraction of some universal information about many-body wave functions.
For a critical spin chain with central charge c = 1, we show that it exhibits a phase transition at some value nc

of the Rényi parameter n which depends on the Luttinger parameter R. A replica-free formulation establishes a
connection to boundary entropies in conformal field theory and reveals that the transition is triggered by a vertex
operator which becomes relevant at the boundary. Our numerical results (XXZ and J1-J2 spin chains) match
the continuum limit prediction, confirming its universal character. The replica approach used in previous works
turns out to be correct only for n < nc. From the point of view of two-dimensional Rokhsar-Kivelson states, this
transition reveals a singularity in the entanglement spectra.

DOI: 10.1103/PhysRevB.84.195128 PACS number(s): 05.30.Rt, 03.67.Mn, 75.10.Pq

I. INTRODUCTION

The entanglement entropy (EE) has become an important
tool for probing and characterizing many-body quantum states.
In one-dimensional (1D) systems, the celebrated logarithmic
divergence1–4 of the von Neumann entropy of a long segment
provides an efficient way to measure the central charge c of
a critical spin chain. In higher dimensions, the EE can also
be used to detect the presence of topological order,5 which is
otherwise invisible to conventional local order parameters and
correlation functions. The understanding of the scaling of the
EE of large subsystems has also opened a route to algorithms
able to simulate efficiently these strongly interacting systems
in d > 1.6

In this paper, we use a different entropy to probe the ground
state of quantum spin chains, the Rényi-Shannon entropy
(RSE) (or configuration entropy). For a normalized state |ψ〉
and a Rényi index n > 0 it is defined as

Sn = 1

1 − n
ln

(∑
i

pn
i

)
, pi = |〈i|ψ〉|2, (1)

where the states |i〉 form a basis of the Hilbert space. The basis
states are chosen to be products of local states, and the Ising
configurations (|i〉 = | ↑↑↓ . . .〉, etc.) are the natural choice
in a system with conserved particle (or Sz) number. It is also
the basis in which the Rényi-Shannon entropy is identical to
the (basis independent) entanglement entropy of some two-
dimensional wave-function (see below).

The RSE is appealing for several reasons. Although it is ba-
sis dependent, its scaling gives some information about the uni-
versal long-distance properties.7 It probes the system globally,
without need to chose a partition and preserving all the spatial
symmetries. This entropy is also the (basis-independent) EE
of some particular two-dimensional (2D) states—the so-called
Rokhsar-Kivelson (RK) wave functions—a fact which has
allowed investigation of the EE at some 2D conformal quantum
critical points.7,8 However, here, we will mostly keep the 1D
spin chain point of view.

A particularly interesting situation is that of the spin- 1
2 XXZ

chain:

H =
∑

i

(
Sx

i · Sx
i+1 + S

y

i · S
y

i+1

) + �
∑

i

Sz
i · Sz

i+1. (2)

For a chain of length L, Sn has a leading term proportional to
L followed by universal subleading contributions. If the chain
is periodic, the first subleading term is O(1), and was shown
to be7,9

Speriodic
n = (· · ·)L + ln(R) − ln n

2(n − 1)
, (3)

where R is the compactification radius, related to the
anisotropy � of the XXZ Hamiltonian [R(�)2 = 2 −
2
π

arccos(�)]. This is a situation where the RSE gives more
precise information than the single-interval EE—which gives
only the central charge.10 With open boundary conditions, the
first subleading correction is also universal and takes the form
of a logarithm of the length L of the chain:8

Sopen
n = (· · ·)L − 1

4 ln(L), (4)

which, in the 2D RK language, confirms at c = 1 the arguments
developed in Ref. 11 (from now on the term proportional to L

will be omitted).
In this paper, however, we show that these results are correct

only below a critical value nc of the Rényi parameter. Using
a replica-free formulation of the problem, we prove that the
Rényi parameter n effectively modifies the compactification
radius of the chain (in a sense to be defined later), and that
a phase transition takes place at n = nc when a (boundary)
vertex operator becomes relevant. A central result concerns
the location of this transition and the behavior of the entropy
above nc:

nc = d2/R2, (5)

Speriodic
n>nc

= 1

n − 1
(n ln R − ln d), (6)

Sopen
n>nc

= ln(L)
n

n − 1

(
R2

4
− 1

4

)
, (7)

where d is the degeneracy of the Ising configuration with
the highest probability pmax in the ground state. At zero
magnetization this configuration is (d = 2)-fold degenerate:

|imax〉 = |↑↓↑↓ . . . ↑↓〉 or |imax〉 = |↓↑↓↑ . . . ↓↑〉. (8)
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II. COMPACT FREE FIELD

To understand this transition we adopt the (1 + 1)-
dimensional (Euclidean) point of view. At long distances, the
model is described by a compactified “height field” h(x,τ )
with Gaussian probabilities:

S[h] = κ

4π

∫
dx dτ (∇h)2, (9)

Z =
∫

D[h] exp(−S[h]), (10)

where κ is the stiffness, r is the compactification radius
(h ≡ h + 2πr), and the physical Luttinger parameter (which
fixes the decay exponents of the correlations functions) is
R = √

2κr . For periodic (open) chains, h is defined on an
infinitely long cylinder (strip) of perimeter (width) L. In this
language, the microscopic configurations |i〉 are replaced by
configurations φ(x) = h(x,τ = 0) of the height field at τ = 0.
To evaluate the probability p[φ], we decompose the field h into
a harmonic function hφ that satisfies the boundary condition
h

φ

τ=0 = φ and a “fluctuating” part δh satisfying a Dirichlet
boundary condition: h = hφ + δh. Exploiting the Gaussian
form of the action and �hφ = 0, we can decouple the classical
and fluctuating parts: S[h] = S[hφ] + S[δh], and we get

p[φ] = exp(−S[hφ])
ZD

Z , (11)

where ZD is the partition function of the whole cylinder (strip)
with a Dirichlet defect line at τ = 0.12 Now p[φ] is raised to
the (possibly noninteger) power n,

p[φ]n = exp(−nS[hφ])

(ZD

Z

)n

, (12)

and we make the observation that exp(−nS[hφ]) is the
Boltzmann weight in a system where the stiffness κ has been
replaced by κ ′ = nκ . From now on we explicitly keep track of
the value of the stiffness κ (as an index) and write

exp(−nSκ [hφ]) = exp(−Snκ [hφ]) = pnκ [φ]
Znκ

ZD
nκ

. (13)

So Eq. (12) can be written as

(pκ [φ])n = pnκ [φ]

(Znκ

ZD
nκ

) (ZD
κ

Zκ

)n

. (14)

Inserting this result in Eq. (1) and using the fact that the
probabilities pnκ [φ] are normalized, we get the main result
of this section:

Sn = 1

1 − n

[
ln

(Znκ

ZD
nκ

)
− n ln

( Zκ

ZD
κ

)]
. (15)

If we assume 2n = p to be an integer, the partition function
Z(n) = ∑

pn
i has a natural interpretation in terms of p

half-infinite systems glued together at their edges, forming
a “book” with p sheets.13 The derivation above, however,
never assumes 2n to be an integer and is therefore different
from the previous derivations involving a replica trick.8,9 Sn

has been reduced to ratios of standard partition functions
with respectively free and Dirichlet boundary conditions at
the boundary between upper (τ > 0) and lower (τ < 0) parts
of the cylinder (or strip). The complications associated with

n-sheeted surfaces8,9 have been avoided. For a compactified
free field and the cylinder geometry, the ratio g2

D = ZD
κ /Zκ is

a well-known “g factor”:14,15

g2
D = R−1 = (2κr2)−1/2. (16)

Combining Eqs. (15) and (16), we find

Sn = ln R − ln n

2(n − 1)
, (17)

in agreement with Refs. 7–9 and 16. For the strip geometry, we
also recover the n-independent result of Eq. (4) by applying
the Cardy-Peschel formula17 to Eq. (15), with four angles
γ = π/2.

III. BOUNDARY PHASE TRANSITION

Equation (15) is a combination of two g factors and there-
fore probes the boundary of the system (the “bookbinding” in
the book picture). The action at the lattice scale is not strictly
Gaussian, and other terms respecting the lattice symmetry
and the periodicity h ≡ h + 2πr are present, including vertex
operators of the type cos( d

r
h). At the boundary such an operator

renormalizes to zero in the long-distance limit if d2 > 2κr2.18

Otherwise it would lock the field to a flat configuration
with degeneracy d. But Eq. (15) cannot be valid anymore
in this locked and massive phase since its derivation assumes
Gaussian probabilities. A boundary phase transition therefore
takes place when the most relevant vertex operator become
marginal in the presence of a stiffness κ ′ = nκ .19 This gives
the critical value of the Rényi index:

nc = d2

2κr2
. (18)

In the case of the antiferromagnetic XXZ chain, the two
Ising configurations | ↑↓↑↓ . . .〉 and | ↓↑↓↑ . . .〉 become the
ground states when � → ∞, which shows that an operator
with two minima is present at the microscopic level. Taking
2κr2 = R(�) and d = 2, we find Eq. (5). We also note that the
same argument applies to the J1-J2 (or zigzag) chain, and to
any Luttinger liquid phase with umklapp terms ∼cos(2h/r).

In this locked phase, the universal contribution to Sn is
given by these d configurations only, so that

Sn>nc
= 1

1 − n
ln[d(pmax)n]. (19)

In the periodic case, pmax simply corresponds to g2
D = ZD/Z

and we recover Eq. (6).
The open chains turn out to be even more interesting. The

universal contribution to Sn>nc
is encoded in

pmax = lim
τ→∞

∣
∣〈s|e−τH |imax〉

∣
∣
2

〈s|e−2τH |s〉 =
Z( )2

Z( )
, (20)

where Z( (is the partition function of a semi-infinite strip
with bottom boundary condition |imax〉 (see Fig. 1). The ratio
in Eq. (20) is similar but not identical to the one used below
the transition (n < nc). As before, four corners with angle π/2
will contribute to −ln pmax by a logarithm: − 1

4 ln L. However,
the configuration with highest probability does not exactly
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δh δh

h(0, τ) = πr h(L + 1, τ) = πr

h(x, τ = 0) = πr/2

Z( )

FIG. 1. (Color online) Height shift δh = πr/2 for the semi-
infinite strip with bottom boundary condition |imax〉.

correspond to the Dirichlet condition in the continuum limit
since there is a height shift δ between the vertical edges of the
strip, and the horizontal boundary (see Fig. 1). It can be treated
by subtracting a harmonic function hδ(x,τ ) = (2δ/π ) arg(x +
iτ ), equal to 0 on the horizontal boundary τ = 0 and δ on the
vertical boundary at x = 0. The resulting contribution to the
free energy is

δF ∼ κδ2

2π2
ln L. (21)

The value shift δ can be obtained by use of, for instance, a
bosonization approach. The free boundary condition for the
spins at the end of the open chain corresponds to the Dirichlet
condition for the free field, and we have to set h(x = 0,τ ) =
h(x = L + 1,τ ) = πr to ensure vanishing spin operators at
both ends.20 Then the continuum limit of the configuration
|imax〉 corresponds to locking h(x,τ = 0) to the minima of the
umklapp term cos(2h/r),21 which has two degenerate minima
at h = πr/2 and 3πr/2. In both cases the height difference
between the x = 0 boundary and that at τ = 0 is δ = πr/2.
Summing up the contributions coming from Eq. (21) and from
the Cardy-Peschel term, we recover our main result Eq. (7).
The same umklapp term – now in the bulk – is also responsible
for the known transition to a massive Néel phase for � > 1.21

IV. NUMERICS

So far, for periodic chains, only the case n = 1 has been in-
vestigated numerically.7 Figure 2 shows the full n dependence
of Sn (with the constant term extracted by fitting the finite-size
data) for different values of �. Although the system sizes
are very small (L � 28), there is a good agreement with the
theoretical predictions, including the change of behavior at the
predicted value of nc (which depends on �). It is only close to
the Heisenberg point (� = 1) and above nc that the finite-size
results deviate from Eq. (7). We attribute these enhanced
finite-size effects to the marginal operators present at the SU(2)
symmetric point. To circumvent this difficulty we also studied
the J1-J2 chain at the critical value J2/J1 
 0.2411,22 which
has the same radius R = √

2 but where finite-size effects are
much smaller. The data again agree well with our prediction.

Open chains were investigated in Ref. 8 for various values
of n and �, but the transition at nc was overlooked. In
Fig. 3 we see a clear tendency for the logarithmic term to
approach the theoretical curves, although the finite-size data
are still far from the thermodynamic limit. Interestingly, the
entropy curves extracted from different system sizes cross in
the immediate vicinity of the predicted value of nc. This leads
us to conjecture that the coefficient of the logarithm may take
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FIG. 2. Constant term in the RSE of periodic XXZ and J1 − J2

chains for different values of � and at the critical point J2/J1 =
0.2411. Each point comes from fitting the data for L = 20,22,24,26
and 28 to aL + b + c/L + d/L2. Fat lines: theoretical prediction
[Eq. (15)]. Eq. (3) is also plotted above nc (dashed lines) for
comparison.

a universal value at the transition point which depends only
on the compactification radius R. At � = 0 we pushed the
numerics to L = 40 spins (see below), and the inset of Fig. 3
shows a collapse of the data for different system sizes onto a
single curve in the vicinity of nc = 4. This indicates a slow
(∼L−1/4) but steady convergence toward a step function. We
also get S

open
n=nc

= −(1/6) ln L with a high precision at � = 0,
although we have no theoretical understanding of this value.

V. � = 0 IN OPEN CHAINS

This corresponds to free fermions and each probability
pi is a determinant (Wick’s theorem). Denoting by {xk}
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FIG. 3. Logarithmic term in the RSE of open XXZ and J1-J2

chains, extracted using Sn 
 aL + b ln L + c + d/L with four con-
secutive system sizes (L, . . . ,L − 6) with L = 16 and 28. Bold lines:
Eq. (15). Inset: scaling close to nc(� = 0) = 4.
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the positions of the up spins (fermions) and setting θk =
πxk/(L + 1), we have

pi = p({θk}) =
(

2

L + 1

)L/4

det
1�j,k�L/2

(sin[jθk]). (22)

This determinant has a “simplectic Vandermonde” form23 and
can be computed exactly. As a particular case we get pmax =
2−L/2. The absence of a logarithmic term in Sn→∞ ∼ − ln pmax

is consistent with Eq. (7), because the contribution from the
height shift exactly compensates for the Cardy-Peschel term
at R(� = 0) = 1. This also rigorously confirms at � = 0 the
value of δ. We also checked the validity of Eq. (7) for the
square-lattice quantum dimer (2D RK) wave function, for
which d = 1 and therefore nc = 1. In this case the microscopic
height representation of dimer coverings allows one to obtain
δ exactly at the lattice level.

VI. CONCLUSION

We showed that the RSE problem of a compactified
boson reduces to a (single-sheet) boundary entropy, but
understanding the meaning of the RSE in situations where the
central charge is not 1 (see Refs. 8 and 13) remains an open
question. This is all the more interesting as it differs from the
continuum limit of the single-interval EE, which reduces to a
two-point correlation function for any c.

This study also showed that taking powers of the wave
function gives rise to a whole line of critical points ending
at a phase transition to an ordered state. In fact, going
back to the 2D RK point of view, this transition reveals a
rich structure in the entanglement spectrum {Ei} of these
wave functions. In some appropriate cylinder geometry,7 the
probabilities pi are nothing else but the eigenvalues of the 2D
reduced density matrix and they directly give the entanglement
spectrum Ei = − ln pi . The phase transition at nc shows that
the spectrum has two distinct regions in the thermodynamic
limit: at high “energy” (small inverse “temperature” n < nc)
the universal contributions to the probabilities are Gaussian,
whereas at low energy (n > nc) they are dominated by
the ordered configurations. This should be compared with
the fractional quantum Hall situation, where the universal
part of the entanglement spectrum has only been seen at
low Ei .24 This may open new directions in the study of
critical and topological wave functions—in 1D and in higher
dimensions—as well as their connection to boundary critical
phenomena.
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